

SB120 - SB1100

1.0A Axial Leaded Schottky Barrier Diode

Features

- Schottky Barrier Chip
- Guard Ring Die Construction for Transient Protection
- High Current Capability
- Low Power Loss, High Efficiency
- High Surge Current Capability
- For Use in Low Voltage, High Frequency Inverters, Free Wheeling, and Polarity Protection Applications

Mechanical Data

- Case: DO-41, Molded Plastic
- Terminals: Plated Leads Solderable per MIL-STD-202, Method 208
- Polarity: Cathode Band
- Weight: 0.34 grams (approx.)
- Mounting Position: Any
- Marking: Type Number
- Lead Free: For RoHS / Lead Free Version,
 Add "-LF" Suffix to Part Number, See Page 4

DO-41							
Dim	Min	Max					
Α	25.4	_					
В	4.06	5.21					
С	0.71	0.864					
D	2.00	2.72					
All Dimensions in mm							

Maximum Ratings and Electrical Characteristics @T_A=25°C unless otherwise specified

Single Phase, half wave, 60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	SB120	SB130	SB140	SB150	SB160	SB180	SB1100	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRRM VRWM VR	20	30	40	50	60	80	100	V
RMS Reverse Voltage	VR(RMS)	14	21	28	35	42	56	70	V
Average Rectified Output Current @T _L = 100°C (Note 1)	lo	1.0						Α	
Non-Repetitive Peak Forward Surge Current 8.3ms Single half sine-wave superimposed on rated load (JEDEC Method)	IFSM	40						А	
Forward Voltage @I _F = 1.0A	VFM	0.50 0.70 0.85				85	٧		
	IRM	0.5 10						mA	
Typical Junction Capacitance (Note 2)	Cj	110			80				pF
Typical Thermal Resistance (Note 1)	RθJL RθJA	15 50					°C/W		
Operating and Storage Temperature Range	Тј, Тѕтс	-65 to +150						°C	

Note: 1. Valid provided that leads are kept at ambient temperature at a distance of 9.5mm from the case.

2. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.

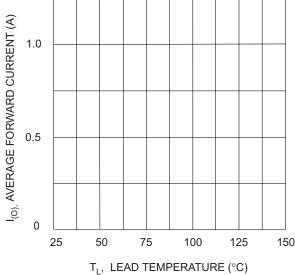
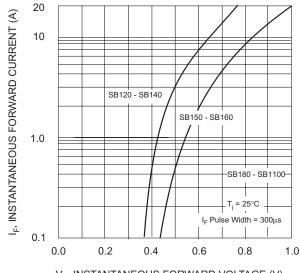
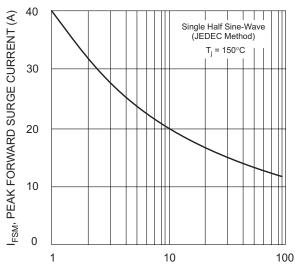




Fig. 1 Forward Current Derating Curve

 V_{F} , INSTANTANEOUS FORWARD VOLTAGE (V) Fig. 2 Typical Forward Characteristics

NUMBER OF CYCLES AT 60 Hz Fig. 3 Max Non-Repetitive Peak Fwd Surge Current

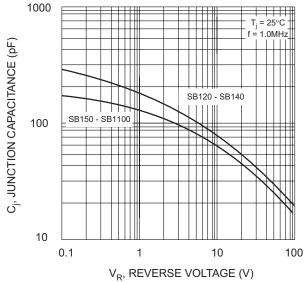
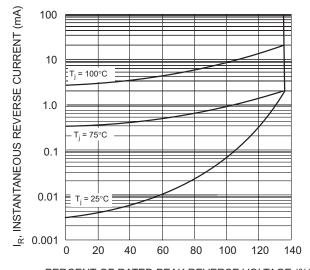



Fig. 4 Typical Junction Capacitance

PERCENT OF RATED PEAK REVERSE VOLTAGE (%)

Fig. 5 Typical Reverse Characteristics